2 Sisi, Rusuk, dan Titik Sudut Kubus dan Balok. Bisa disimpulkan bahwa terdapat hubungan antara banyak sisi, banyak rusuk, dan banyak titik sudut pada bangun ruang di atas. S + T = R + 2. S = banyak sisi T = banyak titik sudut R = banyak rusuk. Rumus di atas biasa disebut teorema Euler. 3. Bangun dari Sisi Kubus dan Balok. 4. MatematikaTRIGONOMETRI Kelas 10 SMATrigonometriAturan KosinusDiketahui segitiga ABC dengan A3,1 B5,2 , dan C1,5 . Besar sudut BAC adalah ....Aturan KosinusTrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0259Diketahui segitiga ABC dengan A4,1,2, B10,9,-6, dan C...0155Seorang siswa akan mengukur tinggi pohon yang berjarak 4a...0312 A dan B titik ujung sebuahterowongan yang dili dari ...0205Pada segitiga ABC, diketahui AC=3 cm, AB=4 cm dan sudut A...Teks videoHai complaints pada soal ini kita mengetahui segitiga ABC dengan koordinat A adalah a 3,1 b 5,2 c 1,5, maka besar sudut b a c adalah disini kita mengetahui untuk vektor AB adalah 52 dikurang 31 yakni 21 untuk vektor AC adalah 15 dikurang 31 yakni negatif 24 maka nilai dari cos a adalah a b * a c dibagi jarak AB dikali jarak a-c yakni cos a = 2 dikali negatif 2 + 1 dikali 4 dibagi akar dari 2 kuadrat ditambah 1 kuadrat ditambah akar dari negatif 2 kuadrat ditambah 4 kuadrat. Nah disini saya beritahukan bahwa cara pengalian untuk a b * a c yakni kita ketahui nilai dari a b adalah 21 sedangkan Aceh adalah negatif 24 maka cara pengalian nya adalah 2 ini kita kalikan dengan 2 ini maka 2 dikali negatif 2 kemudian kita + 1 kita kalikan dengan 4 maka 1 * 4 hasilnya adalah yang sebagai pembilang diatas ini dan untuk jaraknya yakni kita katakan saja untuk x nya adalah untuk a b adalah 2 kuadrat Sedangkan untuk ini adalah 1 kuadrat 6 begitupun untuk AC maka kita dapatkan nilai cos a adalah negatif 4 ditambah 4 per akar 5 * akar 20 Karena kita dapatkan adalah 0, maka sudut yang memenuhi untuk suatu segitiga yakni a adalah 90 derajat maka kita memenuhi yakni opsi C sampai jumpa di pertemuan selanjutnya
Dalamsegitiga ABC diketahui b = 8 cm, c = 5 cm, dan sudut A = 60. Panjang sisi A = a. √7 cm b. 7 cm c. 49 cm d. 89 cm e. √129 cm Pada segitiga ABC diketahui D adalah titik tengah AC jika BC = a, AC = b, AB = c, dan BD =

Contoh Soal Segitiga ABC – Segitiga adalah bagian dari sebuah bangun datar dua dimensi dengan bentuknya yang berpoligon. Sebuah segitiga memiliki 3 sisi, 3 titik, dan 3 sudut. Bagian-bagian segitiga dapat memiliki ukuran yang berbeda bergantung pada bentuknya. Segitga menjadi bangun datar yang memiliki ciri-ciri permukaan datar dan terbentuk dari dua dimensi. Dua dimensi ini biasanya terdiri atas panjang, lebar, luas, keliling, sisi, sudut hingga garis simetris yang berbentuk beraturan. Baca juga Lingkaran Dalam Segitiga dan Lingkaran Luar Segitiga Baca juga Rumus Titik Berat Segitiga Dan Contoh Soal Dari ciri-ciri tersebut menjadikan banyak sekali beberapa jenis sebuah bangun yang masuk ke dalam kategori bangun datar. Ciri khusus yang membedakan segitiga dengan bangun lain dapat dilihat dari , mulai dari bentuk, sudut, dan rumus dalam mencari luas atau kelilingnya. Dengan begitu, dalam menentukan konsep sebuah segitiga perlu dilakukan pemahaman lebih lanjut. Kali ini akan ditampilkan beberapa soal yang berhubungan dengan segitiga abc. Berikut penjelasannya. Soal Segitiga ABC dan Pembahasan 1. Segitiga ABC adalah segitiga siku-siku sama kaki. Dari titik B ditarik garis ke sisi AC sehingga AD = DC. Jika luas segitiga ABC = 2p2 maka BD = … Pembahasan Luas segitiga ABC = 2p² AB = BC maka ¹/₂ . AB . BC = 2p² AB . AB = 4p² AB = 2p Karena AB = BC dan B siku-siku, maka AC = AB√2 atau 2p√2 Luas segitiga bersifat mutlak. AB x BC = AC x BD 4p² = 2p√2 x BD Pages 1 2 3

Ringkasan Diketahui segitiga ABC, dengan AB = 10, BC = 12 dan sudut B = 60 derajat. panjang sisi AC adalah.Top 1: Diketahui segitiga abc dengan ab=10 bc=12 dan sudut b=60. Panjang sisi Pengarang: Peringkat109Ringkasan:. dibawah ini yang bukan termasuk jaring-jaring kubus adalah opsi?
diketahui segitiga ABC dengan A2,1,2,B4,-1,3 dan C2,7, D pada pertengahan BC dan E pada AB sehingga DE tegak lurus AB,maka panjang AE sama dengan Panjang AE adalah 1,5 satuanperhitungan terlampir
ContohSoal Bangun Ruang Pilihan Ganda dan Jawaban – Bangun ruang merupakan bangun yang memiliki ruang yang dibatasi oleh sisi-sisinya. Bangun ruang disebut juga bangun tiga dimensi. Menurut para ahli, bangun ruang adalah bangun dalam matematika yang memiliki volume, isi, dan memiliki 3 komponen penyusun berupa sisi, rusuk, dan titik PembahasanJawaban yang benar untuk pertanyaan tersebut adalah . Ingat ! Jika diketahui titik A x 1 ​ , y 1 ​ , z 1 ​ ​ dan titik B x 2 ​ , y 2 ​ , z 2 ​ ​ . Maka AB = OB − OA = x 2 ​ − x 1 ​ , y 2 ​ − y 1 ​ , z 2 ​ − z 1 ​ a â‹… b = x 1 ​ x 2 ​ + y 1 ​ y 2 ​ + z 1 ​ z 2 ​ ∣ ∣ ​ a ∣ ∣ ​ = x 1 2 ​ + y 1 2 ​ + z 1 2 ​ ​ cos θ ​ = ​ ∣ a ∣ ∣ ∣ ​ b ∣ ∣ ​ a â‹… b ​ ​ Sudut ACB merupakan sudut yang terbentuk antara vektor CA dan vektor CB . cos ∠ACB = ∣ ∣ ​ CA ∣ ∣ ​ â‹… ∣ ∣ ​ CB ∣ ∣ ​ CA â‹… CB ​ Vektor CA CA ​ = = = ​ OA − OC ⎝ ⎛ ​ 4 − 6 4 ​ ⎠⎞ ​ − ⎝ ⎛ ​ 0 2 8 ​ ⎠⎞ ​ ⎝ ⎛ ​ 4 − 8 − 4 ​ ⎠⎞ ​ ​ Vektor CB CB ​ = = = ​ OB − OC ⎝ ⎛ ​ − 2 0 4 ​ ⎠⎞ ​ − ⎝ ⎛ ​ 0 2 8 ​ ⎠⎞ ​ ⎝ ⎛ ​ − 2 − 2 − 4 ​ ⎠⎞ ​ ​ Menentukan nilai CA â‹… CB CA â‹… CB ​ = = = ​ ⎝ ⎛ ​ 4 − 8 − 4 ​ ⎠⎞ ​ ⎝ ⎛ ​ − 2 − 2 − 4 ​ ⎠⎞ ​ − 8 + 16 + 16 24 ​ Menentukan panjang CA ∣ ∣ ​ CA ∣ ∣ ​ ​ = = = = = ​ 4 2 + − 8 2 + − 4 2 ​ 16 + 64 + 16 ​ 96 ​ 16 â‹… 6 ​ 4 6 ​ ​ Menentukan panjang CB ∣ ∣ ​ CB ∣ ∣ ​ ​ = = = = = ​ − 2 2 + − 2 2 + − 4 2 ​ 4 + 4 + 16 ​ 24 ​ 4 â‹… 6 ​ 2 6 ​ ​ Menentukan besar sudut ACB . cos ∠ACB θ θ ​ = = = = = = = ​ ∣ ∣ ​ CA ∣ ∣ ​ â‹… ∣ ∣ ​ CB ∣ ∣ ​ CA â‹… CB ​ 4 6 ​ â‹… 2 6 ​ 24 ​ 8 â‹… 6 24 ​ 48 24 ​ 2 1 ​ arc cos 2 1 ​ 6 0 ∘ ​ Dengan demikian, besarsudut ACB adalah 6 0 ∘ .Jawaban yang benar untuk pertanyaan tersebut adalah . Ingat ! Jika diketahui titik dan titik . Maka Sudut merupakan sudut yang terbentuk antara vektor dan vektor . Vektor Vektor Menentukan nilai Menentukan panjang Menentukan panjang Menentukan besar sudut . Dengan demikian, besar sudut adalah .
\n \n \n diketahui segitiga abc dengan titik sudut a 2 7 b
Diketahuisegitiga ABC, titik D dan E berturut - turut pada sisi AB dan AC, dengan panjang AD = 1 2 BD dan AE = 1 2 CE. Garis BE dan CD berpotongan di titik F. Diketahui luas segitiga ABC adalah 90 cm2. Luas segiempat ADFE adalah ( no 19) Osk 2012 1. Diberikan segitiga siku-siku ABC, dengan AB sebagi sisi miringnya.

PembahasanJawaban yang benar untuk pertanyaan tersebut koordinat titik D adalah 4 , 3 , 2 dan pada segitiga ADC , ∠D adalah sudut siku-siku. Ingat! Jika C membagi AB di dalam dengan perbandingan m n , maka c = m + n m b + n a ​ Diketahui segitiga ABC dengan titik-titik sudut A 5 , 1 , 5 , B 11 , 8 , 3 dan C − 3 , − 2 , 1 .D adalah titik tengah BC, dengan demikian D membagi BCmenjadi BD DC dengan perbandingan 1 1 , oleh karena itu D ​ = = = = ​ 1 + 1 1 11 , 8 , 3 + 1 − 3 , − 2 , 1 ​ 2 11 , 8 , 3 + − 3 , − 2 , 1 ​ 2 8 , 6 , 4 ​ 4 , 3 , 2 ​ Jadi, koordinat titik D adalah 4 , 3 , 2 . Untuk menentukan vektor AD dan DC , kita dapat melakukan perhitungan sebagai berikut AD DC ​ = = = = = = ​ d − a 4 , 3 , 2 − 5 , 1 , 5 − 1 , 2 , 3 c − d − 3 , − 2 , 1 − 4 , 3 , 2 − 7 , − 5 , − 1 ​ AD ⋅ DC ​ = = = ​ − 1 − 7 + 2 − 5 + − 3 − 1 7 − 10 + 3 0 ​ Karena AD ⋅ DC ​ = ​ 0 ​ , maka besar sudut ∠D = 9 0 ∘ . Dengan demikian,koordinat titik D adalah 4 , 3 , 2 dan pada segitiga ADC , ∠D adalah sudut yang benar untuk pertanyaan tersebut koordinat titik D adalah dan pada segitiga , adalah sudut siku-siku. Ingat! Jika C membagi AB di dalam dengan perbandingan , maka Diketahui segitiga dengan titik-titik sudut , dan . D adalah titik tengah BC, dengan demikian D membagi BC menjadi dengan perbandingan , oleh karena itu Jadi, koordinat titik D adalah . Untuk menentukan vektor dan , kita dapat melakukan perhitungan sebagai berikut Karena , maka besar sudut . Dengan demikian, koordinat titik D adalah dan pada segitiga , adalah sudut siku-siku.

Diketahuisegitiga ABC dengan koordinat titik sudut di A (6,12),B (-9,3),dan C (6,-6).gambar bayangan hasil transformasinya jika diketahui segitiga tersebut: a.didilatasi dengan mengunakan faktor skala 1/3 dengan pusat titik asal kemudian dirotasi 90 derajat searah jarum jam yang berpusat di titik asal. b.didilatasi dengan menggunakan faktor skala 2 - Berikut ini 50 latihan soal latihan PAS UAS Matematika kelas 10 SMA semester 2, berikut dengan kunci jawaban. Contoh soal PAS, UAS Matematika Kelas 10 Semester 2 terdiri dari 50 soal pilihan ganda lengkap dengan kunci jawabannya. Semua soal PAS, UAS Matematika Kelas 10 Semester 2 ini, ditujukan kepada orang tua untuk memandu proses belajar anak menghadapi Penilaian Akhir Tahun PAT atau Ujian Kenaikan Kelas UKK. Pastikan siswa harus terlebih dahulu menjawab soal PAS, UAS Matematika Kelas 10 SMA/MA ini, sebelum menengok hasil kunci jawaban. Gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Contoh Soal PAS, UAS Matematika Kelas 10 Kurikulum 2013 1. Diketahui titik C dan D diwikili oleh c=10, 8, dan d=2, 4. Jika diketahui titik R terletak pada vector CD dengan perbandingan CR RD = 1 3. Tentukan titik R!A. 1, 3B. 2, 4C. 7, 7D. 8, 6E. 8, 7 Kunci Jawaban E 2. Sebuah vector yang panjangnya satu, biasa disebut dengan ..A. Vector satuanB. Vector nolC. Vector kolomD. Vector posisiE. Kolinear Kunci Jawaban A 3. Bentuk sederhana vector PQ+QB+BA+AC+AS adalah …A. PPB. AAC. PSD. PCE. QS Kunci Jawaban C 4. Susi suka basket, Nino suka badminton, dan Ali suka sepak bola. relasi yang mungkin dari ketiga anak tersebut adalah...A. macam-macam olah ragaB. bola kesukaan merekaC. olah raga kesukaan merekaD. makanan kesukaan merekaE. hobi mereka Kunci Jawaban C 5. Diketahui fungsi gx= x + 1 dan fx= x2 + x - 1. komposisi fungsi f0 g x = ...A. x2 + 3x + 3B. x2 + 3x + 2C. x2 - 3x + 1D. x2 + 3x - 1E. x2 + 3x + 1 Kunci Jawaban E 6. Suatu fungsi f R → R ditentukan oleh ƒ x = x2 + 2. Anggota dari daerah asal yang mempunyai peta 18 adalah...A. 5 dan -5B. 4 dan -4C. 3 dan -3D. 2 dan -2E. 1 dan -1 Kunci Jawaban B 7. Diketahui himpunan pasangan berurutan dari suatu relasi adalah {1, 3; 2, 3; 2, 4; 3, 1}. Himpunan daerah asalnya adalah...A. {1, 2}B. {1, 2, 3}C. {1, 2, 3, 4}D. {1, 3, 4}E. {3, 4} Kunci Jawaban B 8. Diketahui K = { 3, 4, 5} dan L = { 1, 2, 3, 4, 5, 6, 7}, himpunan pasangan berurutan yang menyatakan relasi " dua lebihnya dari" himpunan K ke himpunan L adalah...A. { 3, 5; 4, 6}B. { 3, 5; 4, 6; 5,7}C. { 3, 1; 4, 2; 5,3 }D. { 3, 2; 4, 2; 5, 2}E. { 3, 1; 3, 2; 3, 3} Kunci Jawaban B 9. Range dari pasangan terurut { 2, 1; 3, 5; 4, 2; 4, 4; 6, 4} adalah...A. {1, 2, 4, 5}B. {1, 2, 3, 4, 5}C. {1, 2, 3, 4, 5, 6}D. {1, 3, 5}E. {2, 4, 6} Kunci Jawaban A 10. Dari pernyataan- pernyataan berikutI. Siswa dengan tempat duduknyaII. Siswa dengan tanggal lahirnyaIII. Negara dengan lagu kebangsaannyaYang berkorespondensi satu-satu adalah...A. Hanya II dan IIIB. Hanya I, II dan IIIC. Hanya I dan IIID. Hanya I dan IIE. Hanya I Kunci Jawaban A 11. Di bawah ini adalah himpunan berpasangan1. 1, a; 2, b; 3, b2. 1, a; 1, b; 3, c3. 2, 4; 4, 8, 6, 124. 2, 4, 2, 8, 6, 12Yang merupakan pemetaan adalah...A. 2 dan 4B. 2 dan 3C. 1 dan 3D. 1 dan 2E. 1 dan 4 Kunci Jawaban C 12. Diketahui suatu fungsi dengan rumus fx = 15 – 2x. jika fa = 7 maka nilai a adalah …….A. 11B. 4C. 1D. 7E. -4 Kunci Jawaban B 13. Berapakah hasil dari 3 log 12 + 3 log 24 – 3 log 1/27…A. 1B. 3C. 4D. 2E. 6 Kunci Jawaban B 14. Apabila 3log2 = a, maka jika 3 log 12 akan memiliki nilai…A. a + 1B. 2a + 1C. 3a + 1D. 2a + 3E. a + 2 Kunci Jawaban B 15. Apabila garis y = bx – a digunakan untuk memotong garis y = ax2 + bx a – 2b pada titik 1,1 dan x0, y0, maka hasil dari x0 + y0 adalah….A. 2B. 0C. -2D. -4E. -6 Kunci Jawaban E 16. Rumus suatu fungsi dinyatakan dengan fx = 2x + 5. Jika fa = 7, nilai a adalah … .A. -1B. -2C. 1D. 2 E. 3 Kunci Jawaban C 17. Diketahui rumus fungsi fx = -1-x. Nilai f-2 adalah … .A. -3B. -2 C. -1D. 1E. 2 Kunci Jawaban D 18. Jika fx = 4x2 + 3x + 5, maka nilai f1/2 adalah ... .A. 5,5B. 6,5C. 7,5D. 8,5E. 9,5 Kunci Jawaban C 19. Jika fx = x2 + 2x – c, dan f3 = 9. Maka nilai c adalah ... .A. 6 B. 5C. -5D. -6E. -8 Kunci Jawaban A 20. 33. Diketahui PQR, jika p = 4 cm, q = 6 cm, dan ∠R=30o maka luas PQR adalah...A. 4 cm2B. 5 cm2C. 6 cm2D. 7 cm2E. 8 cm2 Kunci Jawaban B 21. Jika diketahui segitiga ABC dengan a = 10 cm, b = 12 cm, dan C = 1200 maka luas segitiga tersebut adalah...A. 60 cm2B. 30√3 cm2C. 40 cm2D. 40√3 cm2E. 30 cm2 Kunci Jawaban C sin ⁡4x+sin⁡2x /cos⁡ 4x +cos⁡2x senilai dengan....A. tan 3xB. –tan 3xC. cos 3xD. cotan 3xE. – cotan 3x Kunci Jawaban B 23. Tiga buah kapal P,Q,R menebar jaring dan ketiganya membentuk sebuah segitiga. Jika jarak P ke Q 120 m, Q ke R adalah 100 m,dan ∠PQR adalah 120o. Maka luas daerah tangkapan yang terbentuk oleh ketiga kapal tersebut adalah... m2B. 3000√3 m2C. 3000√2 cm2D. 3000√3 cm2E. 3000 m2 Iklan untuk Anda Warga Yang Sakit Lutut dan Pinggul Wajib Membaca Ini!Advertisement byKunci Jawaban A 24. Grafik fungsi fx = sin 4x mempunyai periode...A. πB. 2πC. 3πD. π/2E. 1/3 π Kunci Jawaban B 25. Besar Amplitudo dari grafik y = 2 sin x dalam interval 0o ≤ x 360o adalah...A. 2B. 3C. 6D. –3E. –4 Kunci Jawaban D 26. Jika ƒx = 3x – 5 dan gx = 6 – x – x2, maka ƒx – gx = ....A. x2+ 4x – 11 B. x2 + 4x + 11C. –x2 – 4x – 11D. x2 – 5x + 10E. x2 + 5x – 10 Kunci Jawaban A 27. Jika fx = 2x-1/3x+4 , x≠-4/3, maka f -1 x adalah...A. 4X-1/3X+2 , x ≠-2/3B. 4X-1/3X-2, x ≠2/3C. 4X+1/2-3X , x ≠2/3D. -4X-1/3X -_2 , x ≠2/3E. 4X+1/3X+2 , x ≠2/3 Kunci Jawaban A 28. Diketahui fungsi f A → R dengan fx = x2 + 2x – 3. Jika daerah asal A = {x – 4 ≤ x ≤ 3}, maka daerah hasil fungsi f adalah….A. {y 0 ≤ y ≤ 12}B. {y 5 ≤ y ≤ 12}C. {y – 4 ≤ y ≤ 12}D. {y – 4 ≤ y ≤ 5}E. {y y ≤ 12} Kunci Jawaban C 29. Jika diketahui fungsi fx = x – 11, maka berapakah nilai fx2 – 3fx – fx2?A. 19x – 19x – -25x – -25x + -3x + 11. Kunci Jawaban A 30. Pada segitiga PQR, diketahui panjang sisi PQ = 12 cm, QR = 10 cm, dan besar ∠Q = 30°. Luas segitiga PQR adalah … 30√ 30√ 60. Kunci Jawaban A 31. Diketahui suatu fungsi hx = fx . gx. Jika nilai fx = x + 6 dan gx = 2x – 1, maka berapakah nilai hx?A. 2x2 + 12x – 2x2 + 12x + 2x2 + 11x – 2x2 + 11x + 2x2 – 11x + 6. Kunci Jawaban C 32. Himpunan penyelesaian dari pertidaksamaan x^2-2x-8>0 adalah....A. {x│x4,x ∈R}B. {x│x-4,x ∈R}C. {x│x>-2 atau x>4,x ∈R}D. {x│x≤-2 atau x≥4,x ∈R}E. {x│x≤-2 atau x>4,x ∈R} Kunci Jawaban E 33. Himpunan penyelesaian dari √x-1>√3-xadalah...A. {x│-2B. {x│ 2C. {x│-2≤x<3,x∈R}D. {x│ 2E. {x│-2 Kunci Jawaban A 34. Diketahui gx = 2x + 3 dan fx = x2 – 4x + 6, maka fogx = ….A. 2x2-8x + 12B. 2x2 – 8x + 15C. 4x2 + 4x + 3D. 4x2 + 4x + 15E. 4x2+ 4x + 27 Kunci Jawaban B 35. Nilai x dan y yang memenuhi sistem persamaan y = 2x – 3 dan 3x – 4y = 7 adalah.....A. x = -1 dan y = 2B. x = -1 dan y = -1C. x = 1 dan y = -1D. x = -1 dan y = -2E. x = -1 dan y = 1 Kunci Jawaban C 36. Dalam segitiga ABC, A, B, dan C merupakan sudut-sudutnya. Jika tan A = 3/4 dan tan B = 4/3, maka sin C =....A. -1B. 2C. 1D. 24/25E. - 24/25 Kunci Jawaban B 37. Diketahui segitiga ABC dengan panjang AB = 6 cm, BC = 5 cm dan AC = 4 cm. Nilai cos B adalah …A. 1/2B. 3/4C. 4/5D. 8/9E. 11/12 Kunci Jawaban C 38. Jika sin A = 12/13, maka cos 2 A = ....A -160/169B. 160/ 169C -119/169D. 25/169E. -25/169 Kunci Jawaban B 39. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 1200B. 900C. 600D. 450E. 300 Kunci Jawaban C 40. Himpunan pasangan berurutan berikut yang merupakan fungsi adalah ... .A. {2,2,1,1,3,2} B. {2,2,2,1,2,3}C. {2,2,2,3,3,2}D. {3,2,3,3,4,3}E. {1,3,3,1,3,3} Kunci Jawaban A 41. Range dari himpunan pasangan berurutan {2, 1, 3, 5, 4, 2, 4, 4, 6, 4} adalah …A. {1, 2, 3, 5} B. {1, 2, 4, 5}C. {1, 2, 3, 4, 5}D. {1, 2, 3, 4, 5, 6}E. {1, 2, 3, 4, 5, 6} Kunci Jawaban B 42. Diketahui A = {2,3} dan B = {1,3,5}. Banyaknya anggota A x B adalah ... .A. 8 buah B. 6 buah C. 4 buah D. 3 buah .E. 2 buah Kunci Jawaban B 43. Ukuran sudut 2100 kalau dinyatakan dalam radian adalah....A. 7/12 π 7/6 π 4/12 π 6/7 π 12/7 π rad Kunci Jawaban D 44. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,260B. 35,260C. 37,260D. 39,260E. 40,260 Kunci Jawaban B 45. 100 + 200 + π/6+ π/4+π/3 sama dengan ... A. 1350B. 1650C. 1800D. 2100E. 2750 Kunci Jawaban B 46. Sudut rad., kalau dinyatakan dalam derajat adalah...A. 32,26 derajatB. 37,26 derajatC. 39,26 derajatD. 30,26 derajatE. 25,78 derajat Kunci Jawaban E 47. Suatu segitiga ABC siku-siku di B, besar sudut A = 30 derajat, panjang AB = 15 cm. Panjang sisi AC adalah…A. 10 cmB. 10 cmC. 5 cmD. 15 cmE. 30 cm Kunci Jawaban C 48. Diketahui cos α derajat adalah 1/2. α sudut lancip 0 derajat < α derajat < 90 derajat. Berapa nilai perbandingan trigonometri sudut α derajat yang lain?A. cos sec α = c/a = 2/√3 = 2/3√6B. cos sec α = c/a = 2/√3 = 2/3√4C. cos sec α = c/a = 2/√3 = 2/4√3D. cos sec α = c/a = 2/√3 = 1/2√3E. cos sec α = c/a = 2/√3 = 2/3√3 Kunci Jawaban E 49. Berapa radian jarak putar jarum menit sebuah jam apabila ia berputar selama 45 menit?A. 45/720 2π=1/16πradB. 45/720 2π=1/8πradC. 45/120 2π=1/2πradD. 45/620 2π=1/3πradE. 45/420 2π=1/4πrad Kunci Jawaban B 50. Dalam sebuah segitiga KLM, diketahui k = 4 cm, l = 3 cm, dan luasnya 6 cm2. Besar sudut apit sisi k dan l adalah...A. 120 derajatB. 90 derajatC. 45 derajatD. 30 derajatE. 60 derajat Kunci Jawaban E * Disclaimer artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak. Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Artikel ini telah tayang di dengan judul 50 Soal PAS, UAS Matematika Kelas 10 Semester 2 K13 dan Kunci Jawaban Penilaian Akhir Tahun

Padasegitiga ABC diketahui besar sudut A = 45° , panjang sisi BC = 18 cm, dan besar sudut C = 120° December 15, 2021 by Wa Sumi Apakah Anda sedang mencari pada segitiga ABC diketahui besar sudut A = 45° , panjang sisi BC = 18 cm, dan besar sudut C = 120°, jika iya? maka Anda berada di website yang tepat.

Jawaban yang benar untuk pertanyaan tersebut adalah , dan , serta keliling segitiga adalah satuan. Ingat bahwa adalah vektor posisi titik , adalah vektor posisi titik , adalah vektor posisi titik . Soal nomor a. Vektor yang mewakili ruas garis berarah dari titik pangkal ke titik , maka diperoleh Soal nomor b. Vektor yang mewakili ruas garis berarah dari titik pangkal ke titik , maka diperoleh Soal nomor c. Vektor yang mewakili ruas garis berarah dari titik pangkal ke titik , maka diperoleh Soal nomor d. Ingat kembali rumus menghitung panjang vektor tiga dimensi yaitu . Untuk menentukan keliling yaitu dengan rumus Terlebih dahulu kita tentukan panjang vektor , dan diperoleh Akibatnya diperoleh Dengan demikian, diperoleh , dan , serta keliling segitiga adalah satuan.
Metode1Menghitung Sudut Interior Poligon. 1. Hitung jumlah sisi dalam poligon. Untuk bisa menghitung besar sudut interior poligon, pertama-tama Anda perlu menentukan banyaknya sisi yang dimiliki poligon tersebut. Ketahui bahwa jumlah sisi poligon sama dengan jumlah sudutnya.
kecepatankelereng dari titik B harus Jawaban : Diketahui : ∠A =30o ∠B=90o t a = t b Gambar. 1.8 segitiga ABC (i) dengan sudut C = 60o Dari gambar diatas dapat kita misalkan beberapa hal sebagai berikut : Titik C merupakan titik keberangkatan kedua kapal tersebut.
.
  • 6579e08qx2.pages.dev/330
  • 6579e08qx2.pages.dev/39
  • 6579e08qx2.pages.dev/235
  • 6579e08qx2.pages.dev/360
  • 6579e08qx2.pages.dev/366
  • 6579e08qx2.pages.dev/270
  • 6579e08qx2.pages.dev/183
  • 6579e08qx2.pages.dev/307
  • diketahui segitiga abc dengan titik sudut a 2 7 b